Copied to
clipboard

G = C522Dic3order 300 = 22·3·52

The semidirect product of C52 and Dic3 acting via Dic3/C2=S3

non-abelian, soluble, monomial, A-group

Aliases: C522Dic3, (C5×C10).S3, C52⋊C33C4, C2.(C52⋊S3), (C2×C52⋊C3).1C2, SmallGroup(300,13)

Series: Derived Chief Lower central Upper central

C1C52C52⋊C3 — C522Dic3
C1C52C52⋊C3C2×C52⋊C3 — C522Dic3
C52⋊C3 — C522Dic3
C1C2

Generators and relations for C522Dic3
 G = < a,b,c,d | a5=b5=c6=1, d2=c3, cbc-1=ab=ba, cac-1=a3b2, ad=da, dbd-1=a-1b-1, dcd-1=c-1 >

25C3
3C5
3C5
15C4
25C6
3C10
3C10
25Dic3
3Dic5
15C20
3C5×Dic5

Character table of C522Dic3

 class 1234A4B5A5B5C5D5E5F610A10B10C10D10E10F20A20B20C20D20E20F20G20H
 size 11501515333366503333661515151515151515
ρ111111111111111111111111111    trivial
ρ2111-1-11111111111111-1-1-1-1-1-1-1-1    linear of order 2
ρ31-11i-i111111-1-1-1-1-1-1-1-i-i-i-iiiii    linear of order 4
ρ41-11-ii111111-1-1-1-1-1-1-1iiii-i-i-i-i    linear of order 4
ρ522-100222222-122222200000000    orthogonal lifted from S3
ρ62-2-1002222221-2-2-2-2-2-200000000    symplectic lifted from Dic3, Schur index 2
ρ7330115452ζ53+2ζ5525ζ54+2ζ531+5/21-5/205452ζ53+2ζ5ζ54+2ζ535251+5/21-5/2ζ52ζ53ζ54ζ5ζ5ζ52ζ53ζ54    complex lifted from C52⋊S3
ρ8330-1-1525ζ54+2ζ53ζ53+2ζ554521-5/21+5/20525ζ54+2ζ535452ζ53+2ζ51-5/21+5/255452535355452    complex lifted from C52⋊S3
ρ933011ζ53+2ζ55452ζ54+2ζ535251+5/21-5/20ζ53+2ζ55452525ζ54+2ζ531+5/21-5/2ζ53ζ52ζ5ζ54ζ54ζ53ζ52ζ5    complex lifted from C52⋊S3
ρ10330-1-1ζ53+2ζ55452ζ54+2ζ535251+5/21-5/20ζ53+2ζ55452525ζ54+2ζ531+5/21-5/253525545453525    complex lifted from C52⋊S3
ρ11330-1-15452ζ53+2ζ5525ζ54+2ζ531+5/21-5/205452ζ53+2ζ5ζ54+2ζ535251+5/21-5/252535455525354    complex lifted from C52⋊S3
ρ1233011ζ54+2ζ535255452ζ53+2ζ51-5/21+5/20ζ54+2ζ53525ζ53+2ζ554521-5/21+5/2ζ54ζ5ζ53ζ52ζ52ζ54ζ5ζ53    complex lifted from C52⋊S3
ρ1333011525ζ54+2ζ53ζ53+2ζ554521-5/21+5/20525ζ54+2ζ535452ζ53+2ζ51-5/21+5/2ζ5ζ54ζ52ζ53ζ53ζ5ζ54ζ52    complex lifted from C52⋊S3
ρ14330-1-1ζ54+2ζ535255452ζ53+2ζ51-5/21+5/20ζ54+2ζ53525ζ53+2ζ554521-5/21+5/254553525254553    complex lifted from C52⋊S3
ρ153-30i-i525ζ54+2ζ53ζ53+2ζ554521-5/21+5/20-2ζ52554-2ζ53-2ζ545253-2ζ5-1+5/2-1-5/2ζ43ζ5ζ43ζ54ζ43ζ52ζ43ζ53ζ4ζ53ζ4ζ5ζ4ζ54ζ4ζ52    complex faithful
ρ163-30-iiζ54+2ζ535255452ζ53+2ζ51-5/21+5/2054-2ζ53-2ζ52553-2ζ5-2ζ5452-1+5/2-1-5/2ζ4ζ54ζ4ζ5ζ4ζ53ζ4ζ52ζ43ζ52ζ43ζ54ζ43ζ5ζ43ζ53    complex faithful
ρ173-30-ii5452ζ53+2ζ5525ζ54+2ζ531+5/21-5/20-2ζ545253-2ζ554-2ζ53-2ζ525-1-5/2-1+5/2ζ4ζ52ζ4ζ53ζ4ζ54ζ4ζ5ζ43ζ5ζ43ζ52ζ43ζ53ζ43ζ54    complex faithful
ρ183-30-iiζ53+2ζ55452ζ54+2ζ535251+5/21-5/2053-2ζ5-2ζ5452-2ζ52554-2ζ53-1-5/2-1+5/2ζ4ζ53ζ4ζ52ζ4ζ5ζ4ζ54ζ43ζ54ζ43ζ53ζ43ζ52ζ43ζ5    complex faithful
ρ193-30i-i5452ζ53+2ζ5525ζ54+2ζ531+5/21-5/20-2ζ545253-2ζ554-2ζ53-2ζ525-1-5/2-1+5/2ζ43ζ52ζ43ζ53ζ43ζ54ζ43ζ5ζ4ζ5ζ4ζ52ζ4ζ53ζ4ζ54    complex faithful
ρ203-30-ii525ζ54+2ζ53ζ53+2ζ554521-5/21+5/20-2ζ52554-2ζ53-2ζ545253-2ζ5-1+5/2-1-5/2ζ4ζ5ζ4ζ54ζ4ζ52ζ4ζ53ζ43ζ53ζ43ζ5ζ43ζ54ζ43ζ52    complex faithful
ρ213-30i-iζ54+2ζ535255452ζ53+2ζ51-5/21+5/2054-2ζ53-2ζ52553-2ζ5-2ζ5452-1+5/2-1-5/2ζ43ζ54ζ43ζ5ζ43ζ53ζ43ζ52ζ4ζ52ζ4ζ54ζ4ζ5ζ4ζ53    complex faithful
ρ223-30i-iζ53+2ζ55452ζ54+2ζ535251+5/21-5/2053-2ζ5-2ζ5452-2ζ52554-2ζ53-1-5/2-1+5/2ζ43ζ53ζ43ζ52ζ43ζ5ζ43ζ54ζ4ζ54ζ4ζ53ζ4ζ52ζ4ζ5    complex faithful
ρ23660001+51+51-51-5-3-5/2-3+5/201+51+51-51-5-3-5/2-3+5/200000000    orthogonal lifted from C52⋊S3
ρ24660001-51-51+51+5-3+5/2-3-5/201-51-51+51+5-3+5/2-3-5/200000000    orthogonal lifted from C52⋊S3
ρ256-60001-51-51+51+5-3+5/2-3-5/20-1+5-1+5-1-5-1-53-5/23+5/200000000    symplectic faithful, Schur index 2
ρ266-60001+51+51-51-5-3-5/2-3+5/20-1-5-1-5-1+5-1+53+5/23-5/200000000    symplectic faithful, Schur index 2

Smallest permutation representation of C522Dic3
On 60 points
Generators in S60
(2 42 48 35 54)(3 49 36 43 37)(5 39 45 32 51)(6 52 33 46 40)(7 55 19 13 26)(9 28 15 21 57)(10 58 22 16 29)(12 25 18 24 60)
(1 34 41 53 47)(2 35 42 54 48)(3 49 36 43 37)(4 31 38 50 44)(5 32 39 51 45)(6 52 33 46 40)(7 55 19 13 26)(8 20 27 56 14)(9 21 28 57 15)(10 58 22 16 29)(11 23 30 59 17)(12 24 25 60 18)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)(49 50 51 52 53 54)(55 56 57 58 59 60)
(1 59 4 56)(2 58 5 55)(3 57 6 60)(7 54 10 51)(8 53 11 50)(9 52 12 49)(13 48 16 45)(14 47 17 44)(15 46 18 43)(19 42 22 39)(20 41 23 38)(21 40 24 37)(25 36 28 33)(26 35 29 32)(27 34 30 31)

G:=sub<Sym(60)| (2,42,48,35,54)(3,49,36,43,37)(5,39,45,32,51)(6,52,33,46,40)(7,55,19,13,26)(9,28,15,21,57)(10,58,22,16,29)(12,25,18,24,60), (1,34,41,53,47)(2,35,42,54,48)(3,49,36,43,37)(4,31,38,50,44)(5,32,39,51,45)(6,52,33,46,40)(7,55,19,13,26)(8,20,27,56,14)(9,21,28,57,15)(10,58,22,16,29)(11,23,30,59,17)(12,24,25,60,18), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60), (1,59,4,56)(2,58,5,55)(3,57,6,60)(7,54,10,51)(8,53,11,50)(9,52,12,49)(13,48,16,45)(14,47,17,44)(15,46,18,43)(19,42,22,39)(20,41,23,38)(21,40,24,37)(25,36,28,33)(26,35,29,32)(27,34,30,31)>;

G:=Group( (2,42,48,35,54)(3,49,36,43,37)(5,39,45,32,51)(6,52,33,46,40)(7,55,19,13,26)(9,28,15,21,57)(10,58,22,16,29)(12,25,18,24,60), (1,34,41,53,47)(2,35,42,54,48)(3,49,36,43,37)(4,31,38,50,44)(5,32,39,51,45)(6,52,33,46,40)(7,55,19,13,26)(8,20,27,56,14)(9,21,28,57,15)(10,58,22,16,29)(11,23,30,59,17)(12,24,25,60,18), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60), (1,59,4,56)(2,58,5,55)(3,57,6,60)(7,54,10,51)(8,53,11,50)(9,52,12,49)(13,48,16,45)(14,47,17,44)(15,46,18,43)(19,42,22,39)(20,41,23,38)(21,40,24,37)(25,36,28,33)(26,35,29,32)(27,34,30,31) );

G=PermutationGroup([[(2,42,48,35,54),(3,49,36,43,37),(5,39,45,32,51),(6,52,33,46,40),(7,55,19,13,26),(9,28,15,21,57),(10,58,22,16,29),(12,25,18,24,60)], [(1,34,41,53,47),(2,35,42,54,48),(3,49,36,43,37),(4,31,38,50,44),(5,32,39,51,45),(6,52,33,46,40),(7,55,19,13,26),(8,20,27,56,14),(9,21,28,57,15),(10,58,22,16,29),(11,23,30,59,17),(12,24,25,60,18)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48),(49,50,51,52,53,54),(55,56,57,58,59,60)], [(1,59,4,56),(2,58,5,55),(3,57,6,60),(7,54,10,51),(8,53,11,50),(9,52,12,49),(13,48,16,45),(14,47,17,44),(15,46,18,43),(19,42,22,39),(20,41,23,38),(21,40,24,37),(25,36,28,33),(26,35,29,32),(27,34,30,31)]])

Matrix representation of C522Dic3 in GL5(𝔽61)

10000
01000
003400
000340
000020
,
10000
01000
00900
00010
000034
,
160000
10000
00001
006000
000600
,
4953000
4112000
000600
006000
00001

G:=sub<GL(5,GF(61))| [1,0,0,0,0,0,1,0,0,0,0,0,34,0,0,0,0,0,34,0,0,0,0,0,20],[1,0,0,0,0,0,1,0,0,0,0,0,9,0,0,0,0,0,1,0,0,0,0,0,34],[1,1,0,0,0,60,0,0,0,0,0,0,0,60,0,0,0,0,0,60,0,0,1,0,0],[49,41,0,0,0,53,12,0,0,0,0,0,0,60,0,0,0,60,0,0,0,0,0,0,1] >;

C522Dic3 in GAP, Magma, Sage, TeX

C_5^2\rtimes_2{\rm Dic}_3
% in TeX

G:=Group("C5^2:2Dic3");
// GroupNames label

G:=SmallGroup(300,13);
// by ID

G=gap.SmallGroup(300,13);
# by ID

G:=PCGroup([5,-2,-2,-3,-5,5,10,122,973,7204,1439]);
// Polycyclic

G:=Group<a,b,c,d|a^5=b^5=c^6=1,d^2=c^3,c*b*c^-1=a*b=b*a,c*a*c^-1=a^3*b^2,a*d=d*a,d*b*d^-1=a^-1*b^-1,d*c*d^-1=c^-1>;
// generators/relations

Export

Subgroup lattice of C522Dic3 in TeX
Character table of C522Dic3 in TeX

׿
×
𝔽