non-abelian, soluble, monomial, A-group
Aliases: C52⋊2Dic3, (C5×C10).S3, C52⋊C3⋊3C4, C2.(C52⋊S3), (C2×C52⋊C3).1C2, SmallGroup(300,13)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C52 — C52⋊C3 — C52⋊2Dic3 |
C1 — C52 — C52⋊C3 — C2×C52⋊C3 — C52⋊2Dic3 |
C52⋊C3 — C52⋊2Dic3 |
Generators and relations for C52⋊2Dic3
G = < a,b,c,d | a5=b5=c6=1, d2=c3, cbc-1=ab=ba, cac-1=a3b2, ad=da, dbd-1=a-1b-1, dcd-1=c-1 >
Character table of C52⋊2Dic3
class | 1 | 2 | 3 | 4A | 4B | 5A | 5B | 5C | 5D | 5E | 5F | 6 | 10A | 10B | 10C | 10D | 10E | 10F | 20A | 20B | 20C | 20D | 20E | 20F | 20G | 20H | |
size | 1 | 1 | 50 | 15 | 15 | 3 | 3 | 3 | 3 | 6 | 6 | 50 | 3 | 3 | 3 | 3 | 6 | 6 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | -1 | 1 | i | -i | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -i | -i | -i | -i | i | i | i | i | linear of order 4 |
ρ4 | 1 | -1 | 1 | -i | i | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | i | i | i | i | -i | -i | -i | -i | linear of order 4 |
ρ5 | 2 | 2 | -1 | 0 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | -1 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S3 |
ρ6 | 2 | -2 | -1 | 0 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | -2 | -2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Dic3, Schur index 2 |
ρ7 | 3 | 3 | 0 | 1 | 1 | 2ζ54+ζ52 | ζ53+2ζ5 | 2ζ52+ζ5 | ζ54+2ζ53 | 1+√5/2 | 1-√5/2 | 0 | 2ζ54+ζ52 | ζ53+2ζ5 | ζ54+2ζ53 | 2ζ52+ζ5 | 1+√5/2 | 1-√5/2 | ζ52 | ζ53 | ζ54 | ζ5 | ζ5 | ζ52 | ζ53 | ζ54 | complex lifted from C52⋊S3 |
ρ8 | 3 | 3 | 0 | -1 | -1 | 2ζ52+ζ5 | ζ54+2ζ53 | ζ53+2ζ5 | 2ζ54+ζ52 | 1-√5/2 | 1+√5/2 | 0 | 2ζ52+ζ5 | ζ54+2ζ53 | 2ζ54+ζ52 | ζ53+2ζ5 | 1-√5/2 | 1+√5/2 | -ζ5 | -ζ54 | -ζ52 | -ζ53 | -ζ53 | -ζ5 | -ζ54 | -ζ52 | complex lifted from C52⋊S3 |
ρ9 | 3 | 3 | 0 | 1 | 1 | ζ53+2ζ5 | 2ζ54+ζ52 | ζ54+2ζ53 | 2ζ52+ζ5 | 1+√5/2 | 1-√5/2 | 0 | ζ53+2ζ5 | 2ζ54+ζ52 | 2ζ52+ζ5 | ζ54+2ζ53 | 1+√5/2 | 1-√5/2 | ζ53 | ζ52 | ζ5 | ζ54 | ζ54 | ζ53 | ζ52 | ζ5 | complex lifted from C52⋊S3 |
ρ10 | 3 | 3 | 0 | -1 | -1 | ζ53+2ζ5 | 2ζ54+ζ52 | ζ54+2ζ53 | 2ζ52+ζ5 | 1+√5/2 | 1-√5/2 | 0 | ζ53+2ζ5 | 2ζ54+ζ52 | 2ζ52+ζ5 | ζ54+2ζ53 | 1+√5/2 | 1-√5/2 | -ζ53 | -ζ52 | -ζ5 | -ζ54 | -ζ54 | -ζ53 | -ζ52 | -ζ5 | complex lifted from C52⋊S3 |
ρ11 | 3 | 3 | 0 | -1 | -1 | 2ζ54+ζ52 | ζ53+2ζ5 | 2ζ52+ζ5 | ζ54+2ζ53 | 1+√5/2 | 1-√5/2 | 0 | 2ζ54+ζ52 | ζ53+2ζ5 | ζ54+2ζ53 | 2ζ52+ζ5 | 1+√5/2 | 1-√5/2 | -ζ52 | -ζ53 | -ζ54 | -ζ5 | -ζ5 | -ζ52 | -ζ53 | -ζ54 | complex lifted from C52⋊S3 |
ρ12 | 3 | 3 | 0 | 1 | 1 | ζ54+2ζ53 | 2ζ52+ζ5 | 2ζ54+ζ52 | ζ53+2ζ5 | 1-√5/2 | 1+√5/2 | 0 | ζ54+2ζ53 | 2ζ52+ζ5 | ζ53+2ζ5 | 2ζ54+ζ52 | 1-√5/2 | 1+√5/2 | ζ54 | ζ5 | ζ53 | ζ52 | ζ52 | ζ54 | ζ5 | ζ53 | complex lifted from C52⋊S3 |
ρ13 | 3 | 3 | 0 | 1 | 1 | 2ζ52+ζ5 | ζ54+2ζ53 | ζ53+2ζ5 | 2ζ54+ζ52 | 1-√5/2 | 1+√5/2 | 0 | 2ζ52+ζ5 | ζ54+2ζ53 | 2ζ54+ζ52 | ζ53+2ζ5 | 1-√5/2 | 1+√5/2 | ζ5 | ζ54 | ζ52 | ζ53 | ζ53 | ζ5 | ζ54 | ζ52 | complex lifted from C52⋊S3 |
ρ14 | 3 | 3 | 0 | -1 | -1 | ζ54+2ζ53 | 2ζ52+ζ5 | 2ζ54+ζ52 | ζ53+2ζ5 | 1-√5/2 | 1+√5/2 | 0 | ζ54+2ζ53 | 2ζ52+ζ5 | ζ53+2ζ5 | 2ζ54+ζ52 | 1-√5/2 | 1+√5/2 | -ζ54 | -ζ5 | -ζ53 | -ζ52 | -ζ52 | -ζ54 | -ζ5 | -ζ53 | complex lifted from C52⋊S3 |
ρ15 | 3 | -3 | 0 | i | -i | 2ζ52+ζ5 | ζ54+2ζ53 | ζ53+2ζ5 | 2ζ54+ζ52 | 1-√5/2 | 1+√5/2 | 0 | -2ζ52-ζ5 | -ζ54-2ζ53 | -2ζ54-ζ52 | -ζ53-2ζ5 | -1+√5/2 | -1-√5/2 | ζ43ζ5 | ζ43ζ54 | ζ43ζ52 | ζ43ζ53 | ζ4ζ53 | ζ4ζ5 | ζ4ζ54 | ζ4ζ52 | complex faithful |
ρ16 | 3 | -3 | 0 | -i | i | ζ54+2ζ53 | 2ζ52+ζ5 | 2ζ54+ζ52 | ζ53+2ζ5 | 1-√5/2 | 1+√5/2 | 0 | -ζ54-2ζ53 | -2ζ52-ζ5 | -ζ53-2ζ5 | -2ζ54-ζ52 | -1+√5/2 | -1-√5/2 | ζ4ζ54 | ζ4ζ5 | ζ4ζ53 | ζ4ζ52 | ζ43ζ52 | ζ43ζ54 | ζ43ζ5 | ζ43ζ53 | complex faithful |
ρ17 | 3 | -3 | 0 | -i | i | 2ζ54+ζ52 | ζ53+2ζ5 | 2ζ52+ζ5 | ζ54+2ζ53 | 1+√5/2 | 1-√5/2 | 0 | -2ζ54-ζ52 | -ζ53-2ζ5 | -ζ54-2ζ53 | -2ζ52-ζ5 | -1-√5/2 | -1+√5/2 | ζ4ζ52 | ζ4ζ53 | ζ4ζ54 | ζ4ζ5 | ζ43ζ5 | ζ43ζ52 | ζ43ζ53 | ζ43ζ54 | complex faithful |
ρ18 | 3 | -3 | 0 | -i | i | ζ53+2ζ5 | 2ζ54+ζ52 | ζ54+2ζ53 | 2ζ52+ζ5 | 1+√5/2 | 1-√5/2 | 0 | -ζ53-2ζ5 | -2ζ54-ζ52 | -2ζ52-ζ5 | -ζ54-2ζ53 | -1-√5/2 | -1+√5/2 | ζ4ζ53 | ζ4ζ52 | ζ4ζ5 | ζ4ζ54 | ζ43ζ54 | ζ43ζ53 | ζ43ζ52 | ζ43ζ5 | complex faithful |
ρ19 | 3 | -3 | 0 | i | -i | 2ζ54+ζ52 | ζ53+2ζ5 | 2ζ52+ζ5 | ζ54+2ζ53 | 1+√5/2 | 1-√5/2 | 0 | -2ζ54-ζ52 | -ζ53-2ζ5 | -ζ54-2ζ53 | -2ζ52-ζ5 | -1-√5/2 | -1+√5/2 | ζ43ζ52 | ζ43ζ53 | ζ43ζ54 | ζ43ζ5 | ζ4ζ5 | ζ4ζ52 | ζ4ζ53 | ζ4ζ54 | complex faithful |
ρ20 | 3 | -3 | 0 | -i | i | 2ζ52+ζ5 | ζ54+2ζ53 | ζ53+2ζ5 | 2ζ54+ζ52 | 1-√5/2 | 1+√5/2 | 0 | -2ζ52-ζ5 | -ζ54-2ζ53 | -2ζ54-ζ52 | -ζ53-2ζ5 | -1+√5/2 | -1-√5/2 | ζ4ζ5 | ζ4ζ54 | ζ4ζ52 | ζ4ζ53 | ζ43ζ53 | ζ43ζ5 | ζ43ζ54 | ζ43ζ52 | complex faithful |
ρ21 | 3 | -3 | 0 | i | -i | ζ54+2ζ53 | 2ζ52+ζ5 | 2ζ54+ζ52 | ζ53+2ζ5 | 1-√5/2 | 1+√5/2 | 0 | -ζ54-2ζ53 | -2ζ52-ζ5 | -ζ53-2ζ5 | -2ζ54-ζ52 | -1+√5/2 | -1-√5/2 | ζ43ζ54 | ζ43ζ5 | ζ43ζ53 | ζ43ζ52 | ζ4ζ52 | ζ4ζ54 | ζ4ζ5 | ζ4ζ53 | complex faithful |
ρ22 | 3 | -3 | 0 | i | -i | ζ53+2ζ5 | 2ζ54+ζ52 | ζ54+2ζ53 | 2ζ52+ζ5 | 1+√5/2 | 1-√5/2 | 0 | -ζ53-2ζ5 | -2ζ54-ζ52 | -2ζ52-ζ5 | -ζ54-2ζ53 | -1-√5/2 | -1+√5/2 | ζ43ζ53 | ζ43ζ52 | ζ43ζ5 | ζ43ζ54 | ζ4ζ54 | ζ4ζ53 | ζ4ζ52 | ζ4ζ5 | complex faithful |
ρ23 | 6 | 6 | 0 | 0 | 0 | 1+√5 | 1+√5 | 1-√5 | 1-√5 | -3-√5/2 | -3+√5/2 | 0 | 1+√5 | 1+√5 | 1-√5 | 1-√5 | -3-√5/2 | -3+√5/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C52⋊S3 |
ρ24 | 6 | 6 | 0 | 0 | 0 | 1-√5 | 1-√5 | 1+√5 | 1+√5 | -3+√5/2 | -3-√5/2 | 0 | 1-√5 | 1-√5 | 1+√5 | 1+√5 | -3+√5/2 | -3-√5/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C52⋊S3 |
ρ25 | 6 | -6 | 0 | 0 | 0 | 1-√5 | 1-√5 | 1+√5 | 1+√5 | -3+√5/2 | -3-√5/2 | 0 | -1+√5 | -1+√5 | -1-√5 | -1-√5 | 3-√5/2 | 3+√5/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
ρ26 | 6 | -6 | 0 | 0 | 0 | 1+√5 | 1+√5 | 1-√5 | 1-√5 | -3-√5/2 | -3+√5/2 | 0 | -1-√5 | -1-√5 | -1+√5 | -1+√5 | 3+√5/2 | 3-√5/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
(2 42 48 35 54)(3 49 36 43 37)(5 39 45 32 51)(6 52 33 46 40)(7 55 19 13 26)(9 28 15 21 57)(10 58 22 16 29)(12 25 18 24 60)
(1 34 41 53 47)(2 35 42 54 48)(3 49 36 43 37)(4 31 38 50 44)(5 32 39 51 45)(6 52 33 46 40)(7 55 19 13 26)(8 20 27 56 14)(9 21 28 57 15)(10 58 22 16 29)(11 23 30 59 17)(12 24 25 60 18)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)(49 50 51 52 53 54)(55 56 57 58 59 60)
(1 59 4 56)(2 58 5 55)(3 57 6 60)(7 54 10 51)(8 53 11 50)(9 52 12 49)(13 48 16 45)(14 47 17 44)(15 46 18 43)(19 42 22 39)(20 41 23 38)(21 40 24 37)(25 36 28 33)(26 35 29 32)(27 34 30 31)
G:=sub<Sym(60)| (2,42,48,35,54)(3,49,36,43,37)(5,39,45,32,51)(6,52,33,46,40)(7,55,19,13,26)(9,28,15,21,57)(10,58,22,16,29)(12,25,18,24,60), (1,34,41,53,47)(2,35,42,54,48)(3,49,36,43,37)(4,31,38,50,44)(5,32,39,51,45)(6,52,33,46,40)(7,55,19,13,26)(8,20,27,56,14)(9,21,28,57,15)(10,58,22,16,29)(11,23,30,59,17)(12,24,25,60,18), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60), (1,59,4,56)(2,58,5,55)(3,57,6,60)(7,54,10,51)(8,53,11,50)(9,52,12,49)(13,48,16,45)(14,47,17,44)(15,46,18,43)(19,42,22,39)(20,41,23,38)(21,40,24,37)(25,36,28,33)(26,35,29,32)(27,34,30,31)>;
G:=Group( (2,42,48,35,54)(3,49,36,43,37)(5,39,45,32,51)(6,52,33,46,40)(7,55,19,13,26)(9,28,15,21,57)(10,58,22,16,29)(12,25,18,24,60), (1,34,41,53,47)(2,35,42,54,48)(3,49,36,43,37)(4,31,38,50,44)(5,32,39,51,45)(6,52,33,46,40)(7,55,19,13,26)(8,20,27,56,14)(9,21,28,57,15)(10,58,22,16,29)(11,23,30,59,17)(12,24,25,60,18), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60), (1,59,4,56)(2,58,5,55)(3,57,6,60)(7,54,10,51)(8,53,11,50)(9,52,12,49)(13,48,16,45)(14,47,17,44)(15,46,18,43)(19,42,22,39)(20,41,23,38)(21,40,24,37)(25,36,28,33)(26,35,29,32)(27,34,30,31) );
G=PermutationGroup([[(2,42,48,35,54),(3,49,36,43,37),(5,39,45,32,51),(6,52,33,46,40),(7,55,19,13,26),(9,28,15,21,57),(10,58,22,16,29),(12,25,18,24,60)], [(1,34,41,53,47),(2,35,42,54,48),(3,49,36,43,37),(4,31,38,50,44),(5,32,39,51,45),(6,52,33,46,40),(7,55,19,13,26),(8,20,27,56,14),(9,21,28,57,15),(10,58,22,16,29),(11,23,30,59,17),(12,24,25,60,18)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48),(49,50,51,52,53,54),(55,56,57,58,59,60)], [(1,59,4,56),(2,58,5,55),(3,57,6,60),(7,54,10,51),(8,53,11,50),(9,52,12,49),(13,48,16,45),(14,47,17,44),(15,46,18,43),(19,42,22,39),(20,41,23,38),(21,40,24,37),(25,36,28,33),(26,35,29,32),(27,34,30,31)]])
Matrix representation of C52⋊2Dic3 ►in GL5(𝔽61)
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 34 | 0 | 0 |
0 | 0 | 0 | 34 | 0 |
0 | 0 | 0 | 0 | 20 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 9 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 34 |
1 | 60 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 |
0 | 0 | 60 | 0 | 0 |
0 | 0 | 0 | 60 | 0 |
49 | 53 | 0 | 0 | 0 |
41 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 60 | 0 |
0 | 0 | 60 | 0 | 0 |
0 | 0 | 0 | 0 | 1 |
G:=sub<GL(5,GF(61))| [1,0,0,0,0,0,1,0,0,0,0,0,34,0,0,0,0,0,34,0,0,0,0,0,20],[1,0,0,0,0,0,1,0,0,0,0,0,9,0,0,0,0,0,1,0,0,0,0,0,34],[1,1,0,0,0,60,0,0,0,0,0,0,0,60,0,0,0,0,0,60,0,0,1,0,0],[49,41,0,0,0,53,12,0,0,0,0,0,0,60,0,0,0,60,0,0,0,0,0,0,1] >;
C52⋊2Dic3 in GAP, Magma, Sage, TeX
C_5^2\rtimes_2{\rm Dic}_3
% in TeX
G:=Group("C5^2:2Dic3");
// GroupNames label
G:=SmallGroup(300,13);
// by ID
G=gap.SmallGroup(300,13);
# by ID
G:=PCGroup([5,-2,-2,-3,-5,5,10,122,973,7204,1439]);
// Polycyclic
G:=Group<a,b,c,d|a^5=b^5=c^6=1,d^2=c^3,c*b*c^-1=a*b=b*a,c*a*c^-1=a^3*b^2,a*d=d*a,d*b*d^-1=a^-1*b^-1,d*c*d^-1=c^-1>;
// generators/relations
Export
Subgroup lattice of C52⋊2Dic3 in TeX
Character table of C52⋊2Dic3 in TeX